skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Marleau, Francine R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Candidate Dark Galaxy-2 (CDG-2) is a potential dark galaxy consisting of four globular clusters (GCs) in the Perseus cluster, first identified in D. Li et al. through a sophisticated statistical method. The method searched for overdensities of GCs from a Hubble Space Telescope (HST) survey targeting Perseus. Using the same HST images and new imaging data from the Euclid survey, we report the detection of extremely faint but significant diffuse emission around the four GCs of CDG-2. We thus have exceptionally strong evidence that CDG-2 is a galaxy. This is the first galaxy detected purely through its GC population. Under the conservative assumption that the four GCs make up the entire GC population, preliminary analysis shows that CDG-2 has a total luminosity of L_V,gal = 6.2 ± 3.0 × 10^6 L_⊙ and a minimum GC luminosity of L_V,GC = 1.03 ± 0.2 × 10^6 L_⊙. Our results indicate that CDG-2 is one of the faintest galaxies having associated GCs, while at least ∼16.6% of its light is contained in its GC population. This ratio is likely to be much higher (∼33%) if CDG-2 has a canonical GC luminosity function (GCLF). In addition, if the previously observed GC-to-halo mass relations apply to CDG-2, it would have a minimum dark matter halo mass fraction of 99.94% to 99.98%. If it has a canonical GCLF, then the dark matter halo mass fraction is ≳99.99%. Therefore, CDG-2 may be the most GC dominated galaxy and potentially one of the most dark matter dominated galaxies ever discovered. 
    more » « less
    Free, publicly-accessible full text available June 16, 2026
  2. ABSTRACT We use spectral energy distribution fitting to place constraints on the stellar populations of 59 ultra-diffuse galaxies (UDGs) in the low-to-moderate density fields of the MATLAS survey. We use the routine prospector, coupled with archival data in the optical from the Dark Energy Camera Legacy Survey, and near- and mid-infrared imaging from the Wide-field Infrared Survey Explorer, to recover the stellar masses, ages, metallicities, and star formation time-scales of the UDGs. We find that a subsample of the UDGs lies within the scatter of the mass–metallicity relation (MZR) for local classical dwarfs. However, another subsample is more metal-poor, being consistent with the evolving MZR at high redshift. We investigate UDG positioning trends in the mass–metallicity plane as a function of surface brightness, effective radius, axis ratio, local volume density, mass-weighted age, star formation time-scale, globular cluster (GC) counts, and GC specific frequency. We find that our sample of UDGs can be separated into two main classes: Class A: comprised of UDGs with lower stellar masses, prolonged star formation histories (SFHs), more elongated, inhabiting less dense environments, hosting fewer GCs, younger, consistent with the classical dwarf MZR, and fainter. Class B: UDGs with higher stellar masses, rapid SFHs, rounder, inhabiting the densest of our probed environments, hosting on average the most numerous GC systems, older, consistent with the high-redshift MZR (i.e. consistent with early-quenching), and brighter. The combination of these properties suggests that UDGs of Class A are consistent with a ‘puffed-up dwarf’ formation scenario, while UDGs of Class B seem to be better explained by ‘failed galaxy’ scenarios. 
    more » « less